numpy求矩阵的特征值与特征向量(np.linalg.eig函数详解) 您所在的位置:网站首页 利用QR算法求解矩阵的特征值和特征向量 numpy求矩阵的特征值与特征向量(np.linalg.eig函数详解)

numpy求矩阵的特征值与特征向量(np.linalg.eig函数详解)

2024-06-28 23:34| 来源: 网络整理| 查看: 265

… versionadded:: 1.8.0

Broadcasting rules apply, see the numpy.linalg documentation for details.

This is implemented using the _geev LAPACK routines which compute the eigenvalues and eigenvectors of general square arrays.

The number w is an eigenvalue of a if there exists a vector v such that a @ v = w * v. Thus, the arrays a, w, and v satisfy the equations a @ v[:,i] = w[i] * v[:,i] for :math:i \\in \\{0,...,M-1\\}.

The array v of eigenvectors may not be of maximum rank, that is, some of the columns may be linearly dependent, although round-off error may obscure that fact. If the eigenvalues are all different, then theoretically the eigenvectors are linearly independent and a can be diagonalized by a similarity transformation using v, i.e, inv(v) @ a @ v is diagonal.

For non-Hermitian normal matrices the SciPy function scipy.linalg.schur is preferred because the matrix v is guaranteed to be unitary, which is not the case when using eig. The Schur factorization produces an upper triangular matrix rather than a diagonal matrix, but for normal matrices only the diagonal of the upper triangular matrix is needed, the rest is roundoff error.

Finally, it is emphasized that v consists of the right (as in right-hand side) eigenvectors of a. A vector y satisfying y.T @ a = z * y.T for some number z is called a left eigenvector of a, and, in general, the left and right eigenvectors of a matrix are not necessarily the (perhaps conjugate) transposes of each other.

References

G. Strang, Linear Algebra and Its Applications, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, Various pp.



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有